Economic Burden of Advanced Systemic Mastocytosis: A Real-World **Evaluation of Direct Healthcare Resource Utilization and Costs from a United States Payer Perspective**

¹Blueprint Medicines Corporation, Cambridge, MA, USA; ²IQVIA, Falls Church, VA, USA

Background

- Systemic mastocytosis (SM) is a rare mast cell neoplasm that results from clonal proliferation of abnormal mast cells in at least one extracutaneous organ/tissue.¹ Activating mutations in the KIT-gene (D816V) are almost always present in the malignant mast cells.²
- The World Health Organization (WHO) classifies SM into nonadvanced SM or advanced SM (AdvSM), which includes aggressive SM (ASM), SM with associated hematological neoplasm (SM-AHN), and mast cell leukemia (MCL).^{1,3}

Methods

STUDY DESIGN AND DATA SOURCE

- A retrospective cohort study with a 24-month observation period (12months pre-and post-index) was conducted using the PharMetrics® Plus database from 01 Oct 2015 to 30 Sep 2019 (study period).
- Patients with AdvSM were identified from Oct 1, 2016 to Sep 30, 2018 (selection window). The index date was the date of the first observed SM diagnosis code.
- A 1% random sample of health plan claimants was extracted from the source dataset for forming a non-SM comparison cohort. A randomly selected pharmacy or medical claim was defined as the index date for these patients.

SAMPLE SELECTION

- A claims-based algorithm was used to identify newly diagnosed AdvSM patients (\geq 18 years old) using the following steps: Step 1: Identification of overall SM sample
- Patients were identified with ≥1 medical claim in any position with any of the following ICD-10 CM codes: D47.02 OR C94.30 OR C94.31 OR C94.32 OR C96.21 during the selection window.

Step 2: Of step 1, AdvSM patients were identified

• Included patients who met eligibility criteria for MCL **OR** SM-AHN **OR** ASM any time during the 24-month study period (12-month baseline/pre-index period and 12-month follow-up/post-index period).

- Patients with MCL were identified using \geq 2 SM-specific ICD-10 codes of C94.30 OR C94.31 OR C94.32 OR ≥1 diagnosis code of D47.02 AND ≥1 code of C94.30 OR C94.31 OR C94.32
- Patients with SM-AHN were identified with diagnosis codes for SM AND ≥1 diagnosis code of D46.X (Myelodysplastic syndrome [MDS]) OR C92.X (Acute myeloblastic leukemia [AML]) OR C93.X (Chronic myelomonocytic leukemia) OR D47.1 (Myeloproliferative neoplasms [MPN]) OR C94.6 (MDS/MPN) OR D45 (Polycythemia vera) OR D47.4 or D75.81 (Myelofibrosis) OR D47.3 (Essential [hemorrhagic] thrombocythemia) OR C95.10, C95.11, or C95.12 (Chronic eosinophilic leukemia [CEL])
- Patients with ASM were identified using \geq 1 diagnosis code of C96.21 **OR** presence of diagnosis code D47.02 **AND** ≥2 c-finding codes (including codes for evidence of organ failure, liver or spleen impairment, thrombocytopenia, neutropenia, and weight loss/malabsorption)

Conclusion

• This study showed that patients with AdvSM had significantly higher HCRU and medical costs during the 1-year prior to and following AdvSM diagnosis compared to matched patients without SM. • Future research is needed to understand the role of treatments that could mitigate the economic burden among this population.

Chelsea Norregaard¹, Drishti Shah², Michael Hull², Jenna Cohen¹, Brittany Carroll¹, Mitch DeKoven², Jing He², Erin Sullivan¹

There are specific issues unique to AdvSM which need to be managed, including debilitating symptoms, organ damage and shortened survival.⁴ As patients with AdvSM have different treatment history and level of care, understanding their healthcare burden is important to determine the unmet need. Limited evidence exists on the real-world economic burden of AdvSM.

OBJECTIVE: To estimate and compare rates of healthcare resource utilization (HCRU) and medical costs between patients with AdvSM and a matched cohort of patients without AdvSM in the United States (US).

• Upon identification of AdvSM, the following eligibility criteria were applied:

- Continuous health plan enrollment for 12-months preceding and following (including) the index date
- No data quality issues (invalid year of birth, gender or health plan enrollment dates)
- Without ≥1 diagnosis code for SM in the 12-month pre-index period

OUTCOMES

- Baseline demographic, clinical characteristics, and all-cause HCRU and direct medical costs were assessed in the 12-month pre-index period.
- Rates and frequency of HCRU and direct medical costs were
- examined over the 12-month post-index period (including index date). • HCRU categories (proportion and mean number) included pharmacy reported by prescription fills, outpatient including physician office visits, emergency room [ER] visits, lab/pathology tests, radiology exams surgical services, and ancillary services use and inpatient visits.
- All-cause total direct medical costs included outpatient pharmacy, outpatient medical (physician office visit, ER visit, lab/pathology, radiology, surgical and outpatient ancillary services), and inpatient costs.

STATISTICAL ANALYSIS

- To adjust for potential selection bias, AdvSM patients were direct matched (1:1) on age, gender, index year, and Charlson comorbidity index (CCI) score to non-SM controls.
- Differences in HCRU and costs during the 1-year prior to and following diagnosis were compared using McNemar's test for categorical variables and paired-t test or Wilcoxon-signed rank tests for continuous variables.
- A generalized estimating equation model (GEE) with log link/gamma distribution was used to estimate adjusted cost-ratio between cohorts.
- All costs were converted to 2019 USD using the medical component of the Consumer Price Index.

LIMITATIONS

• Despite efforts to control for potential selection bias with a matched cohort design, all group differences may not have been fully captured. • Patients with SM-AHN may be under-represented in the current study with the eligibility requirement of both an AHN and SM diagnosis code. • Given the observational, retrospective nature of the study, relationships should be considered associative rather than causal

Results

STUDY SAMPLE

A total of 97 AdvSM patients (mean \pm SD age 49 \pm 13 years, 70% female, mean \pm SD CCI 2.1 \pm 2.0) were identified and included in the analysis (Table 1).

Prevalent baseline comorbidities included cancer (41%), hypertension (35%), and anxiety (29%) (**Table 1**).

After direct matching, patients in the two cohorts were well-balanced on age, gender, index year, payer type, and CCI.

TABLE 1. BASELINE CHARACTERISTICS

	Pre-Match			Post-Match		
haracteristics	AdvSM	Non-SM	P-	AdvSM	Non-SM	P-
	(N=97)	(N=110,362)	value	(N=97)	(N=97)	value
e, Mean (SD)	49.0 (12.6)	43.4 (13.6)	<.0001	49.0 (12.6)	49.3 (12.0)	0.4675
male (%)	70.1%	52.2%	0.0004	70.1%	70.1%	NA
gion (%)			0.0828			0.0015
ortheast	18.6%	18.4%		18.6%	17.5%	
idwest	32.0%	27.8%		32.0%	23.7%	
outh	30.9%	41.8%		30.9%	55.7%	
est	18.6%	12.1%		18.6%	3.1%	
yer Type (%)			0.1301			0.9814
ommercial	56.7%	57.7%		56.7%	58.8%	
elf-insured	38.1%	40.3%		38.1%	37.1%	
thers	5.2%	2.1%		5.2%	5.2%	
lex Year (%)			<.0001			NA
)16	0.0%	13.9%		0.0%	0.0%	
)17	39.2%	48.3%		39.2%	39.2%	
)18	60.8%	37.8%		60.8%	60.8%	
I, Mean (SD)	2.1 (2.0)	0.4 (1.0)	< 0001	2.1 (2.0)	2.1 (2.0)	0.8745
ysician specialty (%)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		<.0001		40.007	<.0001
imary care physician	20.6%	16.9%		20.6%	18.6%	
ncologist/Hematologist	12.4%	0.8%		12.4%	0.0%	
lergist/Immunologist	6.2%	0.3%		6.2%	0.0%	
ther	60.8%	82.0%		60.8%	81.4%	
morbidities (%) ^	44.00/	2.00/	< 0004	44.00/	45.50/	< 0.004
ancer	41.2%	3.8%	<.0001	41.2%	15.5%	<.0001
ypertension	30.170 30.00/	20.970	0.0000	JJ. 170	41.Z% 33.70/	0.3035
Ixiely	20.9%	11.170	< 0001	20.3%	2.3.1% 18.6%	0.3532
onraceion	27.0%	4.7%	< 0001	27.0%	17.5%	0.0547
ete of intoroet (%)	23.170	0.070	~.0001	23.170	17.570	0.2300
ane marrow bionsy	23.7%	0.1%	< 0001	23.7%	0.0%	NC
erum Tryntase	61.9%	0.7%	< 0001	61.9%	1.0%	< 0001
dications (%) *	01.070	0.170		01.070	1.070	
orticosteroids	66.0%	29.9%	< 0001	66.0%	46.4%	0 0046
ntihistamines	39.2%	7.0%	< 0001	39.2%	18.6%	0.0006
pinephrine injectors	38.1%	0.8%	< 0001	38.1%	1.0%	< 0001
ntileukotrienes	37.1%	3.1%	<.0001	37.1%	1.0%	<.0001
ontelukast	37.1%	3.1%	<.0001	37.1%	1.0%	<.0001

omorbidities and medications of interest have been presented: NA: P-values are not applicable because patients were direct matched on age group, gender, year of index, and CCI; NC: Could not be computed due to 0 cell size

FIGURE 1. DISTRIBUTION BY TYPE OF ADVSM

The majority of AdvSM patients had ASM (75%) followed by SM-AHN (20%) and MCL (5%) (**Figure 1**). Median pre-index medical costs were significantly higher for AdvSM patients compared to matched non-SM comparator cohort (Figure 2).

FIGURE 2. MEAN (MEDIAN) PRE-INDEX MEDICAL COSTS **BETWEEN ADVSM AND MATCHED NON-SM COHORTS**

P-values are presented only for medians

Proportion of patients with utilization of outpatient medical services was higher in the AdvSM cohort as compared to the non-SM cohort over the 1-year follow-up (Figure 3). Epinephrine prescription fills were observed in 36% of patients with AdvSM compared with 1% of non-SM controls.

FIGURE 4. MEAN POST-INDEX ALL-CAUSE HCRU BETWEEN **ADVSM AND MATCHED NON-SM COHORTS**

	70.0
10	70.0
visits	60.0
ause	50.0
all-c	40.0
er of	30.0
qun	20.0
ean r	10.0
Š	0.0
	oresci
	N AdvSM
ľ	N=31

TABLE 2. MEAN (MEDIAN) ALL-CAUSE MEDICAL COSTS BETWEEN **ADVSM AND MATCHED NON-SM COHORTS**

Medical costs	AdvSM (N=97)		Non-SM (N=97)		P-value	P-value					
	Mean	Median	Mean	Median	(mean)	(median)					
Total	\$69,133	\$29,123	\$24,065	\$8,293	0.0004	<.0001					
Pharmacy	\$26,400	\$4,300	\$13,101	\$871	0.0155	<.0001					
ER	\$3,938	\$0	\$809	\$0	0.1710	0.0144					
Physician office	\$3,615	\$2,534	\$2,086	\$1,011	0.0254	<.0001					
Lab/Pathology	\$3,276	\$1,470	\$600	\$256	0.0007	<.0001					
Radiology	\$2,259	\$1,081	\$852	\$296	0.0008	<.0001					
Surgical	\$3,571	\$3,571	\$1,246	\$1,246	0.0053	0.0008					
Ancillary services	\$9,587	\$2,185	\$2,745	\$516	0.0096	<.0001					
Inpatient	\$16,487	\$0	\$5,385	\$0	0.0681	0.0059					

OUTCOMES: POST-INDEX HCRU AND COSTS

FIGURE 3. PROPORTION OF PATIENTS WITH ALL-CAUSE HCRU **BETWEEN ADVSM AND MATCHED NON-SM COHORTS**

Mean [median] medical costs during the 1-year post-index period were also higher for AdvSM vs. non-SM patients (**Table 2**).

Pharmacy (38.2%) and outpatient costs (38.0%) accounted for majority of the follow-up costs among AdvSM patients.

Findings from GEE showed that patients with AdvSM had 2.1 times higher all-cause total costs as compared to patients without SM (adjusted cost ratio: 2.1; 95% CI: 1.43-3.07; P=0.0001).

<u>References: 1 Pardanani A. American journal of hematology. 2019 Mar, 94(3):363-77; ² Grootens J et al. EBioMedicine.</u> 2019 May 1, 43:150-8; ³ Arber DA, et al. Blood. 2016, 127:2391-2405; ⁴ Valent P et al. International journal of molecular sciences. 2019 Jan;20(12):2976.

Support for this study was provided by Blueprint Medicines Corporation