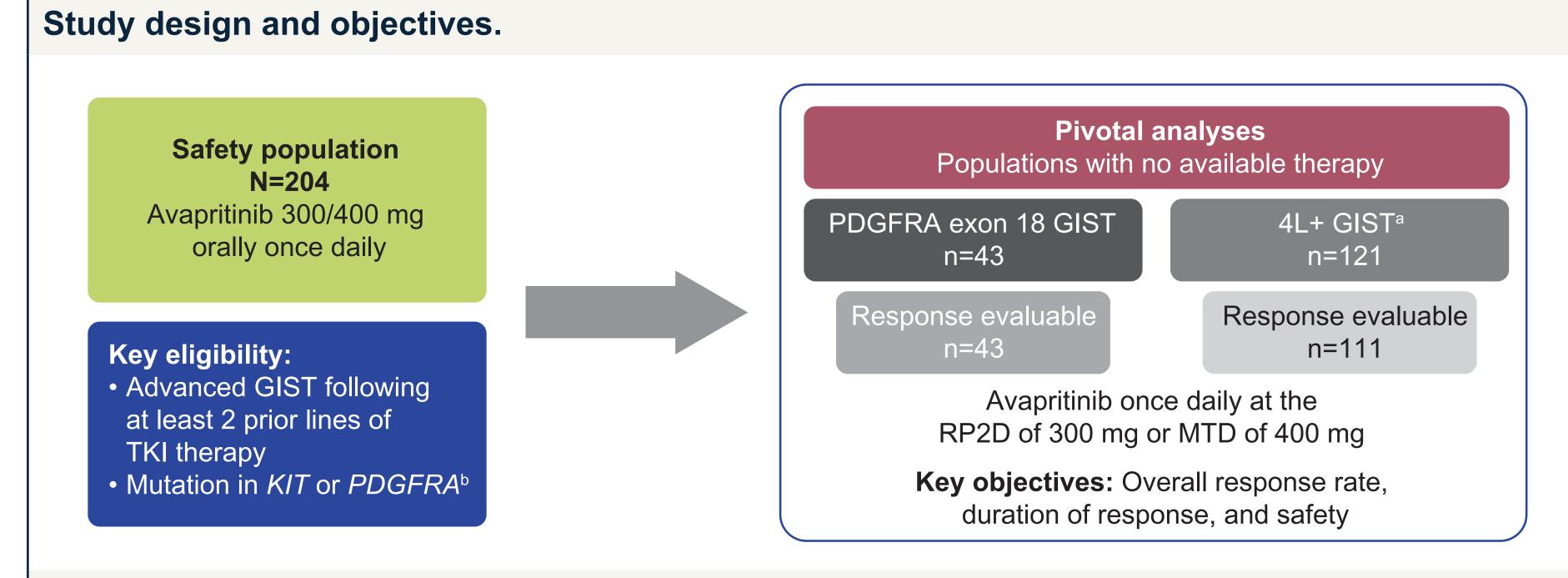


Shreyaskumar Patel,¹⁴ Sant P. Chawla,¹⁵ Eyal Meiri,¹⁶ Teresa Zhou,¹⁷ Maria Roche,¹⁷ Suzanne George¹⁸

¹OHSU Knight Cancer Institute, Portlands; ⁸Institute, Rotterdam, The Netherlands; ⁸Institute, Rotterdam, The Netherlands; ¹OHSU Knight Cancer Research, London, UK; ³Fox Chase Cancer Institute, Rotterdam, The Netherlands; ¹OHSU Knight Cancer, Philadelphia, PA, USA; ⁴University of Duisburg-Essen, Essen, Germany; ⁵Asan Medical Centre, Seoul, South Korea; ⁹Centre Léon Bérard, Lyon, France; ¹⁰Vall d' Hebron Institute, Rotterdam, The Netherlands; ⁸Institute of Oncology, ¹OHSU Knight Cancer Institute, Rotterdam, The Netherlands; ⁸Institute, Rotterdam, The Netherlands; ⁸Institute, Rotterdam, The Netherlands; ⁸Institute, Rotterdam, The Netherlands; ⁸Institute of Cancer Research, London, UK; ³Fox Chase Cancer Institute, Rotterdam, The Netherlands; ⁸Institute, Rotterdam, The Netherlands; ⁸Institute, Rotterdam, The Netherlands; ⁸Institute, Rotterdam, The Netherlands; ⁸Institute, Rotterdam, The Netherlands; ⁹Institute of Oncology, ¹OHSU Knight Cancer, Poiladelphia, PA, USA; ⁴University of Duisburg-Essen, Essen, Essen, Essen, Essen, Essen, Essen, Essen, Essen, Issen, Isse 14 Barcelona, Spain; 14 MD Anderson Cancer Center, New York, NY, USA; 15 Sarcoma Oncology, Warsaw, Poland; 14 MD Anderson Cancer Center, University of Miami, FL, USA; 18 Dana Farber Cancer Center, Houston, TX, USA; 18 Dana Farber Cancer Center, Houston, TX, USA; 18 Dana Farber Cancer Center, New York, NY, USA; 18 Dana Farber Cancer Institute, Boston, MA, USA; 18 Dana Farber Cancer Center, Houston, TX, USA; 18 Dana Farber Cancer Center, New York, NY, USA; 18 Dana Farber Cancer Center, University of Miami, FL, USA; 18 Dana Farber Cancer Center, University of Miami, FL, USA; 18 Dana Farber Cancer Center, Santa Monica, CA, USA; 18 Dana Farber Cancer Center, Houston, TX, USA; 18 Dana Farber Cancer Center, New York, NY, USA; 18 Dana Farber Cancer Center, University of Miami, FL, USA; 18 Dana Farber Cancer Center, Santa Monica, CA, USA; 18 Dana Farber Cancer Center, Houston, TX, USA; 18 Dana Farber Cancer Center, Santa Monica, CA, USA; 18 Dana Farber Cancer Center, Santa Monica, CA, USA; 18 Dana Farber Cancer Center, Santa Monica, CA, USA; 18 Dana Farber Cancer Center, Santa Monica, CA, USA; 18 Dana Farber Cancer Center, Santa Monica, CA, USA; 18 Dana Farber Cancer Center, Santa Monica, CA, USA; 18 Dana Farber Cancer Center, Santa Monica, CA, USA; 18 Dana Farber Cancer Center, Santa Monica, CA, USA; 19 Dana Farber Cancer Center, Santa Monica, CA, USA; 19 Dana Farber Cancer Center, Santa Monica, CA, USA; 19 Dana Farber Cancer Center, Santa Monica, CA, USA; 19 Dana Farber Cancer Center, Santa Monica, CA, USA; 19 Dana Farber Cancer Center, Santa Monica, CA, USA; 19 Dana Farber Cancer Center, Santa Monica, CA, USA; 19 Dana Farber Cancer Center, Santa Monica, CA, USA; 19 Dana Farber Cancer Center, Santa Monica, CA, USA; 19 Dana Farber Cancer Center, Santa Monica, CA, USA; 19 Dana Farber Cancer Center, Santa Monica, CA, USA; 19 Dana Farber Cancer Center, Santa Monica, CA, USA; 19 Dana Farber Cancer Center, Santa Monica, CA, USA; 19 Dana Farber Cancer Center, Santa Monica, CA, USA; 19 Dana Farber Cancer Center, Santa Monica,

BACKGROUND


- The current standard of care for metastatic GIST post-imatinib involves sequential use of multi-targeted TKIs, which are associated with low ORR and off-target toxicities. As secondary resistance mutations accumulate, multi-targeted TKIs lose activity¹
- Effective approved therapies for the treatment of GIST after failure of imatinib, sunitinib, and regorafenib are limited. Retreatment with imatinib has a 0% ORR¹⁻
- Avapritinib is an investigational precision therapy designed to be a highly selective and potent inhibitor of KIT and PDGFRA mutant kinases^{1,2}
- Avapritinib has been approved by the U.S. FDA for the treatment of adults with unresectable or metastatic GIST harboring a PDGFRA exon 18 mutation, including PDGFRA D842V mutations. Avapritnib is not approved for other indications or in other regions of the world⁸

OBJECTIVE

• The objective of this analysis of the NAVIGATOR study (ClinicalTrials.gov Identifier: NCT02508532) was to determine the clinical activity of avapritinib at the RP2D (300 mg QD) and MTD (400 mg QD) in patients with GIST with mutations in PDGFRA exon 18 or in 4L+ irrespective of KIT or PDGFRA mutation

METHODS

• NAVIGATOR (NCT02508532) is an open-label, dose escalation/dose expansion study of avapritinib

^aEnrollment criteria specified that patients were required to have received only ≥ 2 prior lines of TKI therapy (ie, analysis population of 3L+), observed enrollment reflected a more heavily pretreated population (ie, 4L+). ^bMutational analysis was performed locally and confirmed centrally

RESULTS

- Data are based on a data cut-off date of November 16, 2018. Avapritinib is an investigational agent discovered and currently in development by Blueprint Medicines
- Most AEs were grade 1–2, with a higher incidence of commonly reported AEs in the 400 mg QD dose group compared with the 300 mg QD dose group
- No treatment-related grade 5 AEs were reported
- Most patients were able to remain on treatment with dose modifications when needed; relative dose intensity was 86% at 300 mg QD and 73% at 400 mg QD
- 8.3% of patients discontinued avapritinib for a treatment-related toxicity in the starting dose 300/400 mg QD group - Treatment discontinuation due to cognitive effects occurred in 2.0% of patients

References

- . Sutent[®] [package insert]. New York, NY: Pfizer Laboratories; 2 2. Stivarga[®] [package insert]. Whippany, NJ: Bayer HealthCare Pharmaceuticals Inc: 2017.
- 3. Demetri GD, et al. *Lancet*. 2006;368(9544):1329–38.
- 4. Demetri GD, et al. *Lancet*. 2013;381(9863):295–302 5. Nishida T, et al. *Gastric Cancer*. 2016;19(1):3–14.
- 6. Serrano C, George S. Ther Adv Med Onc. 2014;6(3):115-2
- 7. Cassier PA, et al. *Clin Cancer Res*. 2012;18(16):4458–64. 8. Ayvakit[™] [package insert]. Cambridge, MA: Blueprint Medicines Corporation; 2020.

Acknowledgments

The authors would like to thank the participating patients, their families, all study co-investigators, and research coordinators. Third-party medical writing assistance was provided by Ashfield Healthcare Communications, and funded by Blueprint Medicines.

QR Code Disclaimer

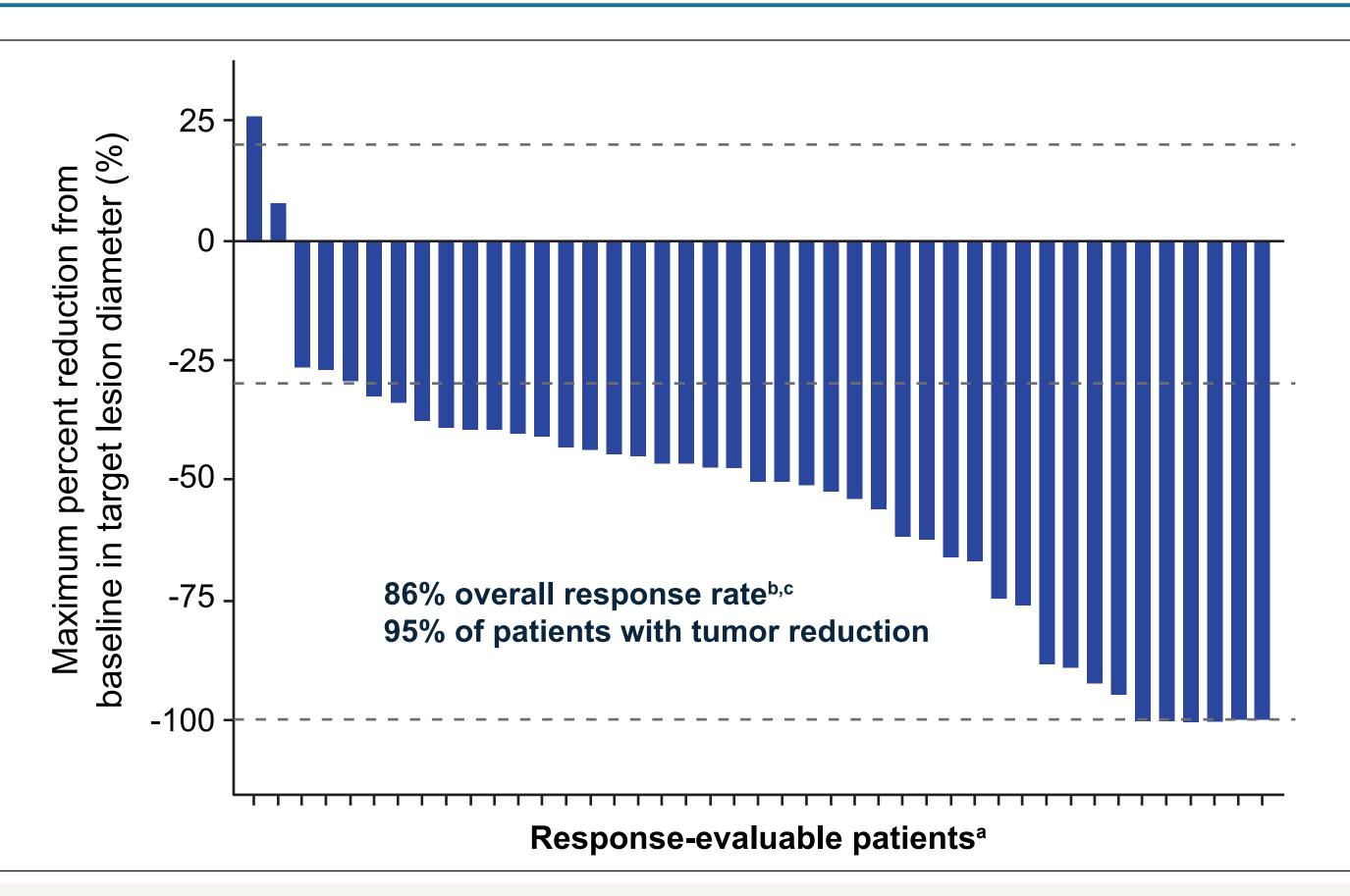
QR Code Disclaimer Copies of this poster obtained through QR (Quick Response) code are for personal use only and may not be reproduced without written permission from ASCO® and the author of this poster of this poster.

Abbreviations

3L, 3rd treatment line; 4L, 4th treatment line; AE, adverse event; CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; FDA, Federal Drug Administration; GIST, gastrointestinal stromal tumor; KIT, KIT receptor tyrosine kinase; mRECIST, modified Response Evaluation Criteria in Solid Tumors; MTD, maximum tolerated dose; ORR, overall response rate; PDGFRA, platelet-derived growth factor receptor alpha; PO, orally; QD, once daily; RP2D, recommended phase 2 dose; TKI, tyrosine kinase inhibitor.

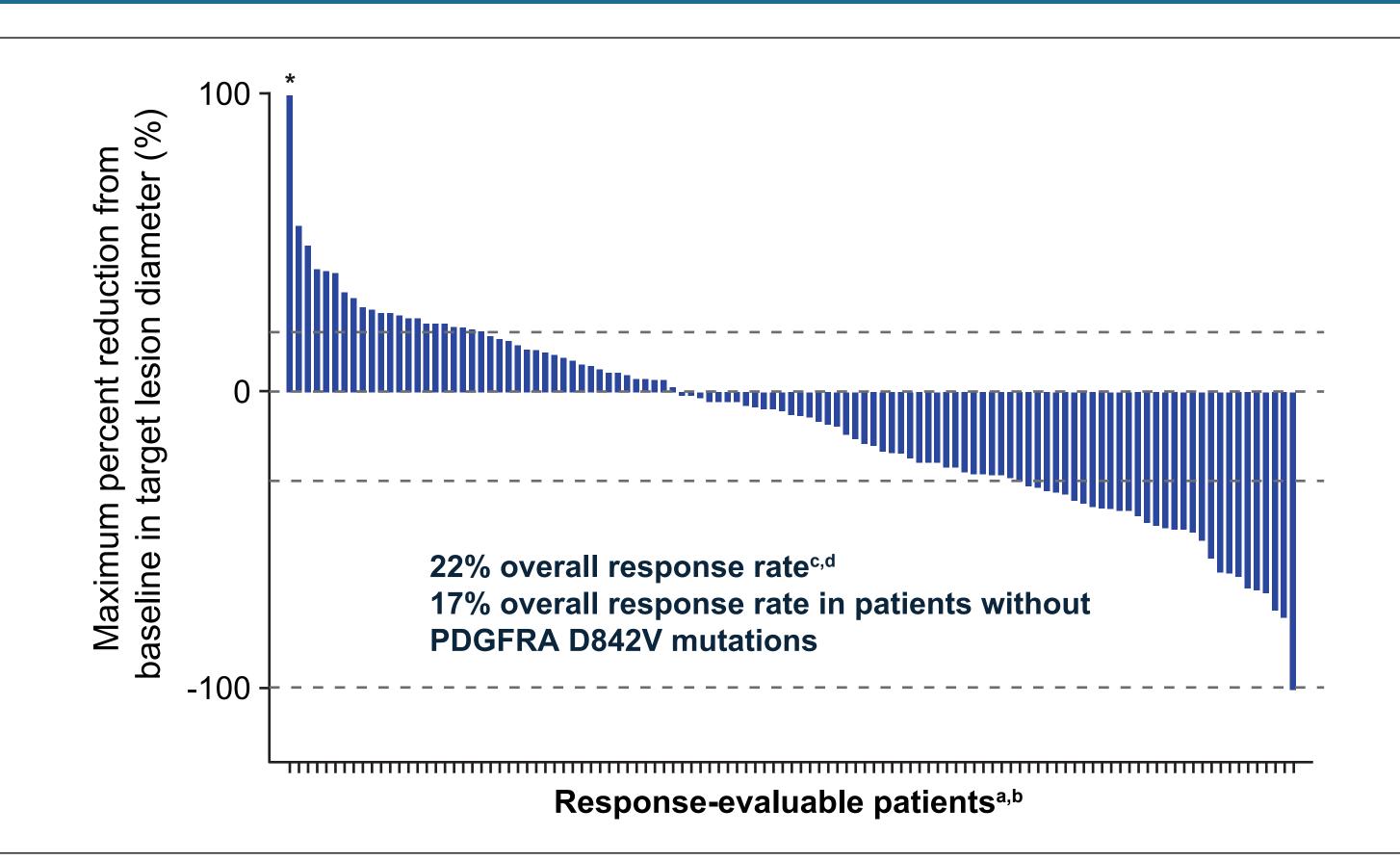
Presented at the 2020 American Society of Clinical Oncology: Gastrointestinal Cancers Symposium, Jan 23–Jan 25, 2020, San Francisco, CA

Most common AEs occurring in ≥15% of the safety population


gnitive effects include pooled terms of memory impairment (29%), cognitive disorder (11%), confusional state (7%), and encephalopathy (1%). Blueprint Medicines considered all cognitive effect AEs as treatment-related in this analysis. bAll grade AEs occuring in $\geq 15\%$ of patients. °Grade ≥ 3 AEs occuring in $\geq 2\%$ of patients. Note: 3 events of intracranial hemorrhage occurred; 2 were grade 3, 1 was grade 1.

Demographics and baseline characteristics

Clinical Activity of Avapritinib in ≥4th Line (4L+) and PDGFRA Exon 18 Gastrointestinal Stromal Tumors (GIST) Michael Heinrich,¹ Robin L. Jones,² Margaret von Mehren,³ Sebastian Bauer,⁴ Yoon-Koo Kang,⁵ Patrick Schöffski,⁶ Ferry Eskens,⁷ Olivier Mir,⁸ Philippe Cassier,⁹ Cesar Serrano,¹⁰ William D. Tap,¹¹ Jonathan Trent,¹² Piotr Rutkowski,¹³


	300/400 mg QD starting dose (N=204)			
	All AEs		Treatment-related AEs	
(%)	All grades ^b	Grade ≥3 ^c	All grades ^b	Grade ≥3 ^c
ausea	131 (64)	5 (3)	121 (59)	-
atigue	113 (55)	15 (7)	96 (47)	13 (6)
nemia	102 (50)	58 (28)	74 (36)	33 (16)
ognitive effects ^a	84 (41)	8 (4)	84 (41)	8 (4)
eriorbital edema	83 (41)	-	82 (40)	-
omiting	78 (38)	4 (2)	65 (32)	-
ecreased appetite	77 (38)	6 (3)	58 (28)	-
arrhea	76 (37)	10 (5)	65 (32)	6 (3)
creased lacrimation	67 (33)	-	62 (30)	-
eripheral edema	63 (31)	-	55 (27)	-
ace edema	50 (25)	-	49 (24)	-
onstipation	46 (23)	-	-	-
zziness	45 (22)	-	-	-
air color changes	43 (21)	-	42 (21)	-
ood bilirubin increased	43 (21)	9 (4)	38 (19)	8 (4)
odominal pain	41 (20)	11 (5)	-	-
eadache	34 (17)	-	-	-
yspnea	34 (17)	5 (2)	-	_
yspepsia	32 (16)	-	-	-
ypokalemia	32 (16)	6 (3)	-	-
ysgeusia	31 (15)	-	31 (15)	-

Antitumor activity and duration of response: PDGFRA exon 18 GIST (avapritinib 300/400 mg QD starting dose, central radiology review)

sessed at baseline by central radiology review and had ≥1 post-baseline disease assessment by central radiology. ^bProportion of responseevaluable patients with a confirmed best response of complete or partial response, confirmed by central radiology and assessed by modified Response Evaluation Criteria in Solid Tumors (mRECIST 1.1) in patients treated with avapritinib starting dose 300/400 mg QD. °1 partial response pending confirmation. ^dProportion with complete response, partial response, or stable disease lasting ≥16 weeks from first dose.

Antitumor activity and duration of response: 4L+ treatment (avapritinib 300/400 mg QD starting dose, central radiology review)

*One patient had an outlier value for percent change from baseline of >200% increase in target lesion diameter. bonse-evaluable patients were comprised of patients who had >1 target lesion assessed at baseline by central radiology review and had >1 post-baseline disease assessment by central radiology. ^bTwo patients who had best response assessment are not included in the plot because they did not have measurable target lesions at baseline and thus, no percent change could be calculated. Proportion of response-evaluable patients with a confirmed best response of complete or partial response, confirmed by central radiology and assessed by modified Response Evaluation Criteria in Solid Tumors (mRECIST 1.1) in patients treated with avapritinib starting dose 300/400 mg QD. d1 partial response pending confirmation. Proportion of patients with complete response, partial response or stable disease lasing ≥16 weeks from first dose.

Best confirmed response: PDGFRA exon 18 by line of therapy

	300/400 mg QD starting dose		
Best response by line of therapy (mRECIST), % (n)	First line (n=5)	≥Second line (n=38)	Total (n=43)
Complete response	40% (2)	3% (1)	7% (3)
Partial response	60% (3)	82% (31)	79% (34) ^a
Stable disease	0	13% (5)	12% (5)
Progressive disease	0	3% (1)	2% (1)
^a 1 pending confirmation.			

 Avapritinib demonstrated clinical activity in first line and subsequent lines of therapy in the PDGFRA exon 18 population

	300/400 mg starting dose	
naracteristic	PDGFRA exon 18 (n=43)	4L+ (n=121)
ge, median years (min–max)	64 (29–90)	59 (33–80)
ex, male, n (%)	29 (67)	70 (58)
ace, white, n (%)	29 (67)	86 (71)
IST mutational subtype, n (%)		
KIT	0	110 (91)
PDGFRA D842V	38 (88)	8 (7)
PDGFRA exon 18 non-D842V ^a	5 (12)	3 (2)
umber of prior lines of TKIs, median (range)	1 (0–5)	4 (3–11)
n (%)	0: 5 (12)	3: 40 (33)
	1: 19 (44)	4: 35 (29)
	≥2: 19 (44)	≥5: 46 (38)
etastatic disease, n (%)	42 (98)	119 (98)
argest target lesion (central radiology review), n (%)		
≤5 cm	20 (47)	40 (33)
>5 to ≤10 cm	14 (33)	57 (47)
>10 cm	9 (21)	22 (18)
rior surgical resection, n (%)	37 (86)	107 (88)
COG performance status, n (%)		
0	14 (33)	39 (32)
1	26 (60)	78 (64)
2	3 (7)	4 (3)

^aPDGFRA exon 18 non-D842V mutations including D842Y, DI 842-845V, I843_D846del, D842-H845, and DI 842-843V.

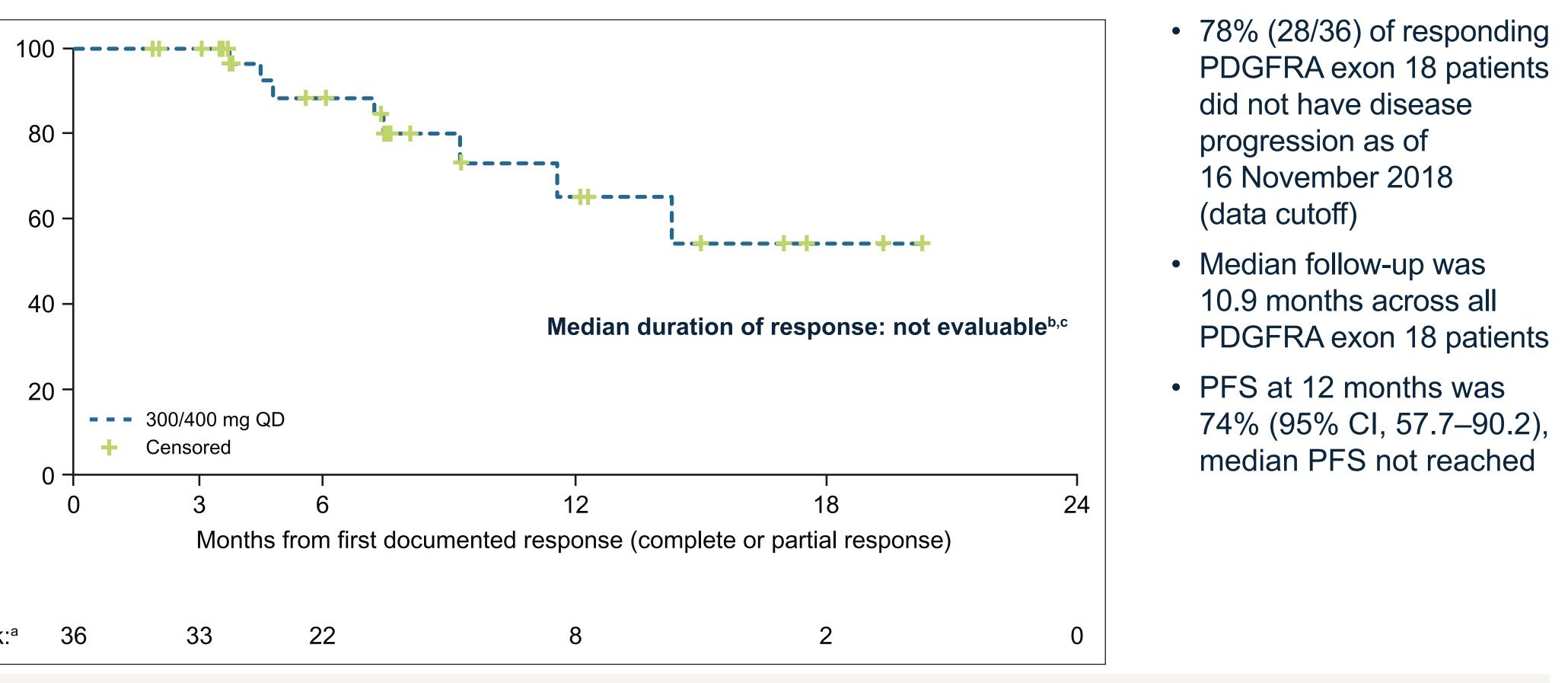
Response (mRECIST, central radiology review), % (n)ª	PDGFRA exon 18 n=43
Overall response rate ^b [95% CI]	86 (37)⁰ [72.1–94.7]
Clinical benefit rate ^d [95% Cl]	95 (41) [84.2–99.4]
Best response	
Complete response	7% (3)
Partial response	79% (34; 1 pending)
Stable disease	12% (5)
Progressive disease	2% (1)

collillueu response

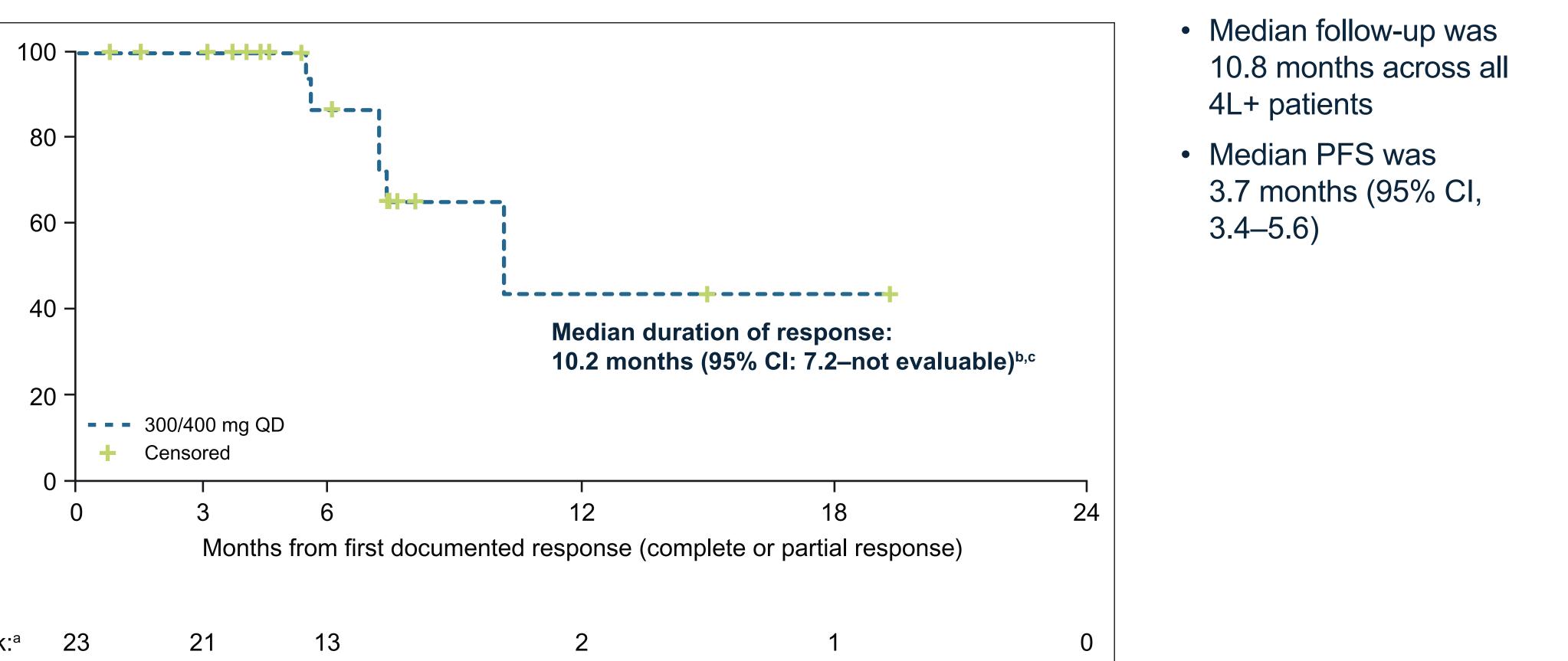
Number at risk:^a

Response (mRECIST, central radiology review), % (n) ^a	4L+ n=111
Overall response rate ^c [95% CI]	22% (24) ^d [14.4–30.4]
Clinical benefit rate ^e [95% CI]	41% (46) [32.2–51.2]
Best response	
Complete response	1% (1)
Partial response	21% (23; 1 pending)
Stable disease	47% (52)
Progressive disease	32% (35)

Ĭ	Se
Its	no
patients v	response
pai	
oţ	ued
ent	tin
ercent	con
Ψ.	U


Number at risk:^a 23

^aPatients with confirmed response. ^bDuration of response defined as the time from first documented response (complete or partial response) to the date of first documented disease progression or death due to any cause, whichever came first. ^cDuration of response is unchanged without the inclusion of patients with PDGFRA D842V mutations.


CONCLUSIONS

- Avapritinib showed important clinical activity in patients with advanced GIST who have limited approved therapies – Among patients with PDGFRA exon 18 mutated GIST, 86% of patients responded, with 78% in response at data cutoff – In patients treated in the 4L+ setting, 22% of patients responded and responses were durable
- Avapritinib was generally well tolerated
- Most AEs were grade 1 or grade 2, predictable, and manageable
- Based on antitumor activity and safety, avapritinib 300 mg QD is the recommended dose for patients with unresectable or metastatic GIST

Avapritinib is an investigational agent discovered and currently in development by Blueprint Medicines.

^aPatients with confirmed response. ^bDuration of response defined as the time from first documented response (complete or partial response) to the date of first documented disease progression or death due to any cause, whichever came first. °95% CI: 11.3 months through not evaluable.

• Data from the NAVIGATOR study led to evaluation of avapritinib in the phase 3 VOYAGER study vs regorafenib (NCT03465722), which has completed target enrollment