

American Society of Hematology Helping hematologists conquer blood diseases worldwide

Results from PIONEER:

a randomized, double-blind, placebo-controlled, phase 2 study of avapritinib in patients with indolent systemic mastocytosis

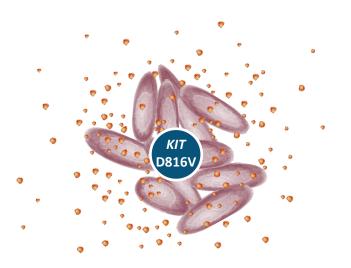
Cem Akin¹, Hanneke Oude Elberink², Jason Gotlib³, Vito Sabato⁴, Karin Hartmann⁵, Sigurd Broesby-Olsen⁶, Mariana Castells⁷, Tsewang Tashi⁸, Mark L. Heaney⁹, Tracy I. George¹⁰, Frank Siebenhaar¹¹, Deepti H. Radia¹², Massimo Triggiani¹³, Paul van Daele¹⁴, Daniel J. DeAngelo¹⁵, Oleg Schmidt-Kittler¹⁶, Hui-Min Lin¹⁶, Andrew Morrison¹⁶, Brenton G. Mar¹⁶, Marcus Maurer¹¹

¹University of Michigan, Ann Arbor, Michigan, USA; ²University Medical Center Groningen, University of Groningen, Groningen, Netherlands; ³Stanford Cancer Institute/Stanford University School of Medicine, Stanford, California, USA; ⁴University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; ⁵University of Basel, Basel, Switzerland; ⁶Odense University Hospital, Odense, Denmark; ⁷Brigham and Women's Hospital, Boston, Massachusetts, USA; ⁸Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA; ⁹Columbia University Medical Center, New York, New York, USA; ¹⁰ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA; ¹¹Dermatological Allergology, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Germany; ¹²Guy's and St Thomas' NHS Foundation Trust, London, UK; ¹³University of Salerno, Salerno, Italy; ¹⁴Erasmus Medical Center, Rotterdam, Netherlands; ¹⁵Dana-Farber Cancer Institute, Boston, Massachusetts, USA; ¹⁶Blueprint Medicines Corporation, Cambridge, Massachusetts, USA

Disclosures

Dr. Akin has received consulting fees and research support from Blueprint Medicines Corporation and consulting fees from Novartis.

The study was sponsored by Blueprint Medicines Corporation.


AYVAKITTM (avapritinib) is approved by the US Food and Drug Administration (FDA) for the treatment of adults with unresectable or metastatic gastrointestinal stromal tumor (GIST) harboring a platelet-derived growth factor receptor alpha (PDGFRA) exon 18 mutation, including PDGFRA D842V mutations.

In Europe, AYVAKYT® (avapritinib) is approved by the European Medicines Agency (EMA) for the treatment of adult patients with unresectable or metastatic GIST harbouring the *PDGFRA* D842V mutation.

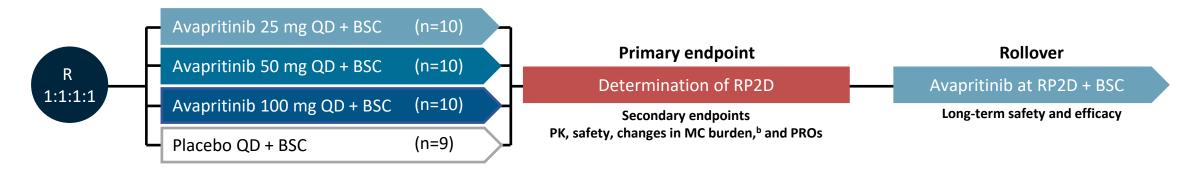
Avapritinib is not approved as safe or effective for use in systemic mastocytosis or any other indication by the FDA, EMA, or any healthcare authority in any jurisdiction.

Systemic mastocytosis is a clonal mast cell neoplasm driven by the KIT D816V mutation^{1,2}

MC hyperactivation, proliferation and mediator release are responsible for debilitating skin, gastrointestinal and neurological symptoms^{3–5}

- There are no approved disease-modifying therapies for patients with indolent SM
- Avapritinib, a highly potent and selective KIT D816V inhibitor, markedly reduced MC burden in the EXPLORER phase 1 study in patients with advanced SM^{6,7}

Baseline


On study

PIONEER (NCT03731260) is a randomized, double-blind, placebo-controlled, phase 2 study of avapritinib versus placebo in patients with indolent SM and symptoms inadequately controlled by supportive care

PIONEER part 1 study design

Key eligibility criteria

- Age ≥18 years, ECOG PS 0–2
- Indolent SM confirmed by central pathology review of BM biopsy and central review of B- and C-findings, according to WHO criteria
- Moderate-to-severe symptoms^a despite ≥2 BSC medications

- PIONEER part 2 is currently enrolling, aiming to assess the safety and efficacy of avapritinib RP2D1
- Patients who complete PIONEER part 1 or part 2 will be eligible to enter an open-label extension to evaluate the long-term safety and efficacy of avapritinib RP2D
- ISM-SAF is a reliable construct valid PRO tool for indolent SM²
 - Clinical benefit measure and primary endpoint in PIONEER part 2
 - − Symptoms in 3 domains scored daily from 0−10, to generate a TSS from 0−110, and analyzed as a 14-day moving average

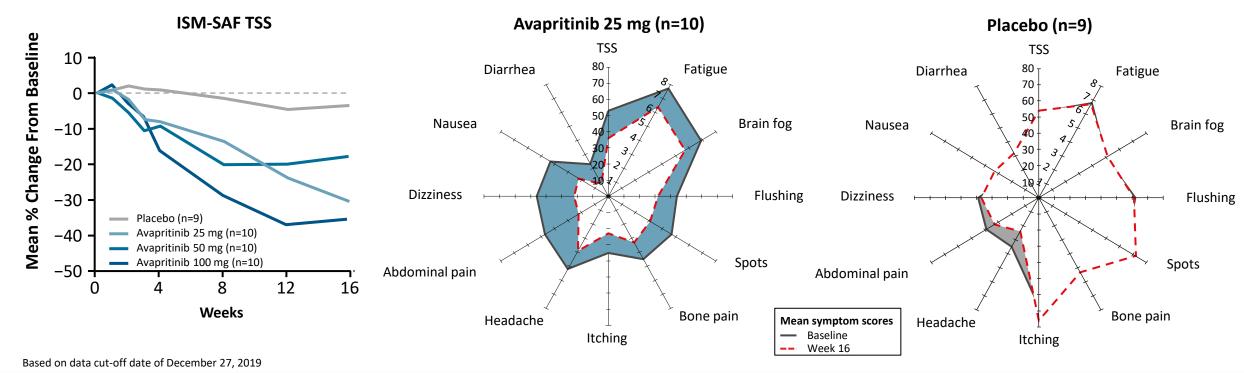
Baseline clinical characteristics and patient disposition

Patient demographic		All doses (n=3	39)		
Age (years), median (range)		51 (21–75)			
Female, n (%)		30 (77)			
ECOG PS, n (%)					
0		12 (31)			
1		19 (49)			
2	8 (21)				
Mast cell burden		All doses (n=3	39)		
Central diagnosis of indolent SM, n (%)		39 (100)			
Tryptase (central) ng/mL, mean (SD)		84 (101)			
Median (range)		45 (6–416)			
<11.4 ng/mL, n (%)	3 (8)				
11.4 to 20 ng/mL, n (%)	6 (15)				
>20 ng/mL, n (%)	30 (77)				
Bone marrow core biopsy MC (central), %					
Mean (SD)		16 (16)			
Median (range)	10 (1–60)				
MC aggregates present, %	90				
KIT D816V mutation	Locala	Central NGSb	Central ddPCR ^c		
Detected, n (%)	31 (80)	11 (28)	37 (95)		
Median MAF, % (range)	_	11 (1.9–32)	0.36 (0.02–30.22)		

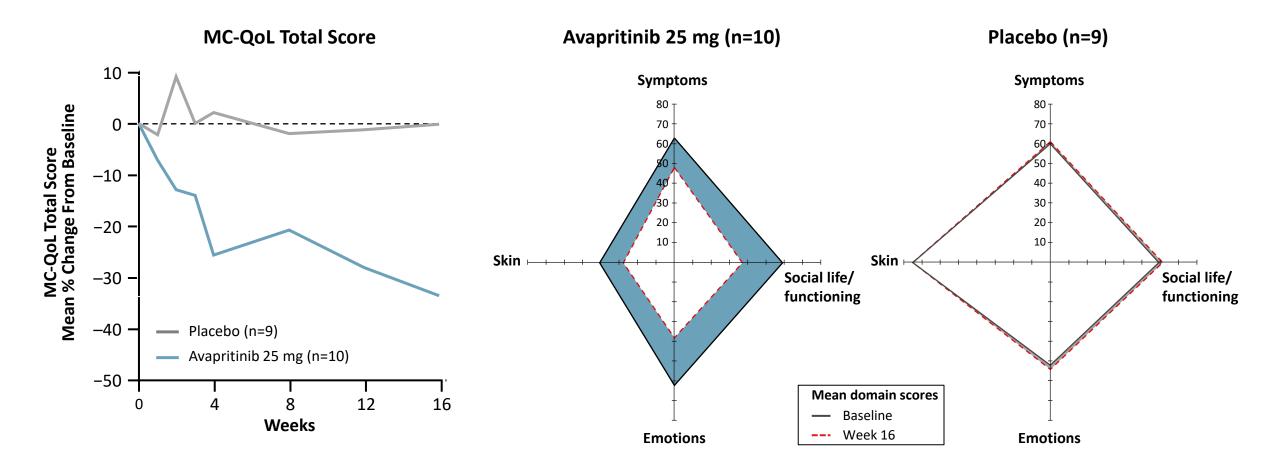
SM therapy	All doses (n=39)		
Prior cytoreductive therapy, n (%)	6 (15)		
Midostaurin, imatinib, dasatinib, masitinib	5 (13)		
Interferon-alfa	1 (3)		
Baseline supportive care medications, median (range)	4 (2–9)		
H1 blockers, n (%)	37 (95)		
H2 blockers, n (%)	30 (77)		
Leukotriene receptor antagonists, n (%)	23 (59)		
Proton pump inhibitors, n (%)	18 (46)		
Cromolyn sodium, n (%)	12 (31)		
Corticosteroids, n (%)	6 (15)		
Omalizumab, n (%)	9 (23)		
Patient disposition	All doses (n=39)		
Weeks on study, median (range)	18 (1–36)		
Still on study, n (%)	37 (95)		
Discontinued study, n (%)	2 (5)		
Patient decision, n	1		
Protocol non-compliance, n	1		

Based on data cut-off date of December 27, 2019

Avapritinib was well tolerated across all doses


			Avapritinib						
AEs in ≥15% of placebo or combined	Placebo (n=9)		25 mg (n=10)		50 mg (n=10)		100 mg (n=10)		
avapritinib arms (any grade) ^a	Any grade	Grade 3	Any grade	Grade 3	Any grade	Grade 3	Any grade	Grade 3	
Patients with AE, %	89	22	100	0	80	20	90	40	
Bone pain	22	0	0	0	0	0	0	0	
Arthralgia	22	0	10	0	10	0	0	0	
Nausea	22	0	10	0	60	10	40	0	
Dizziness	22	0	30	0	30	0	40	0	
Headache	11	0	30	0	30	10	30	10	
Diarrhea	11	0	0	0	40	10	30	10	
Fatigue	11	0	40	0	10	0	10	0	
Face edema	0	0	10	0	0	0	40	0	
Peripheral edema	0	0	10	0	20	0	20	0	
Periorbital edema	0	0	0	0	20	0	30	0	

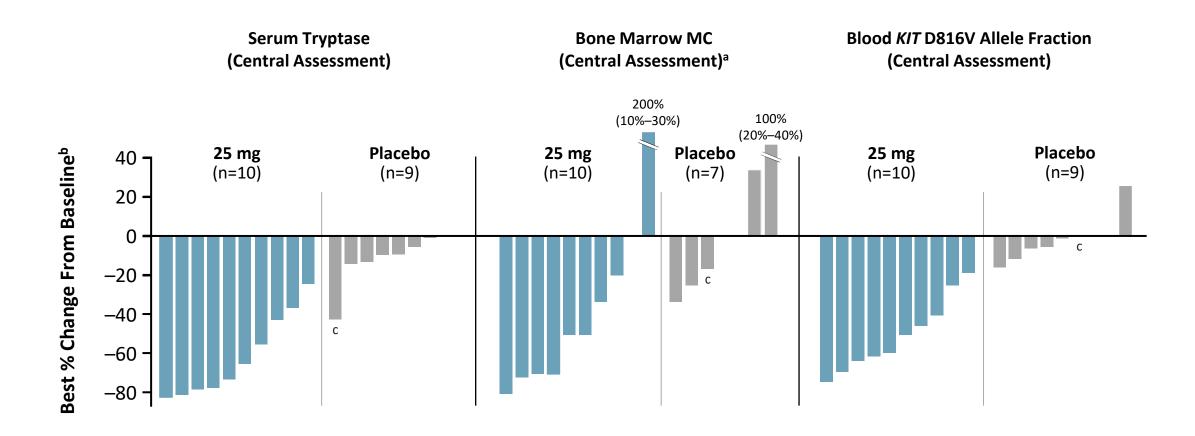
- No Grade 3 AEs or dose modifications were reported in the 25 mg cohort
- No Grade 4 or 5 AEs were reported in the study
- At data cut-off, no patients had discontinued avapritinib due to AEs or progression to AdvSM
- No neutropenia, anemia, thrombocytopenia, or intracranial bleeding was reported
- One Grade 3 cognitive disorder in the 100 mg cohort was resolved following dose modification


Avapritinib improved symptom burden at all doses by ISM-SAF

- Similar temporal improvements in all individual symptoms that comprised TSS were observed across the 3 QD avapritinib doses (line graph)
- Based on tolerability and efficacy findings, avapritinib 25 mg QD was selected as the RP2D
- A significant ~30% mean symptom reduction in ISM-SAF TSS was observed in avapritinib-treated patients (all cohorts combined) versus placebo by Week 16 (P=0.001, not shown)
- The most bothersome symptoms domains at baseline (skin and neurological symptoms for 47% of patients) were improved by avapritinib 25 mg versus placebo by Week 16 (radar plots)



Avapritinib 25 mg QD improved QoL versus placebo by MC-QoL



Avapritinib 25 mg QD improved objective measures of MC burden versus placebo

Conclusions

- Avapritinib, a highly potent and selective KIT D816V inhibitor, had a favorable safety
 profile and demonstrated potential as a new treatment for patients with indolent SM,
 supporting further evaluation of a continuous dosing regimen
- Avapritinib 25 mg QD was selected as the RP2D; clinically meaningful improvements over baseline at Week 16 were reported at this dose
 - Reductions in TSS and most bothersome symptom group
 - Improvements in QoL, as measured by MC-QoL overall score and all domain scores
 - Reductions in bone marrow MC burden, serum tryptase, and blood KIT D816V allele fraction
- Part 2 will be conducted with 25 mg QD; the study is currently enrolling patients in the USA and Europe¹

Acknowledgments

- Participating patients and families
- Avapritinib investigators and research coordinators
- Colleagues at Blueprint Medicines Corporation
- Medical writing support and editorial support were provided by Deborah Cantu, PhD, and Travis
 Taylor, BA, both of Paragon, UK, supported by Blueprint Medicines Corporation, Cambridge, MA