Discovery of BLU-667 for RET-driven cancers

Jason Brubaker Blueprint Medicines Corporation AACR March 30, 2019

1

- I am an employee and shareholder of Blueprint Medicines
- BLU-667 is an investigational therapy discovered and currently in development by Blueprint Medicines

A robust and diverse portfolio focused on kinase inhibitor medicines

Each clinical-stage TKI has achieved rapid proof-of-concept

Avapritinib GIST data presented at November 2017 CTOS Annual Meeting. Data cutoff: October 11, 2017; Avapritinib systemic mastocytosis data presented at December 2017 ASH Annual Meeting. Data cutoff: October 4, 2017; BLU-554 data presented at September 2017 ESMO Congress. Data cutoff: August 18, 2017; BLU-667 data presented at April 2018 AACR Annual Meeting. Data cutoff: April 6, 2018. Kinome illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com) (CSTI). The foregoing website is maintained by CSTI, and Blueprint Medicines is not responsible for its content; GIST, gastrointestinal stromal tumors; HCC, hepatocellular carcinoma; 3L+, third-line or later treatment. TKI = Tvrosine kinase inhibitor

Broad coverage of the kinome with highly diverse collection

- 10,000+ carefully crafted and tested molecules from over 100 scaffolds
- Broad and deep coverage of kinome
 - >85% coverage 1 scaffold
 - ~70% coverage 3 scaffolds
 - ~45% coverage 6 scaffolds
- High quality, differentiated med chem starting points
- Library compounds pre-screened against human wildtype kinases and several disease associated mutants

The fully annotated library accelerates high quality hit identification

Rapid program progression through accelerated hit identification, efficient prioritization, and informed optimization

RET is an RTK required for normal development¹

ERK, extracellular signal-regulated kinase; GDNF, glial cell line-derived neurotrophic factor; GFR, GDNF family receptor; MAPK, mitogen-activated protein kinase; MEK, MAPK/ERK kinase; P, phosphorylation; RAF, rapidly accelerated fibrosarcoma; RAS, rat sarcoma; RET, rearranged during transfection; RTK, receptor tyrosine kinase; TK, tyrosine kinase.

1. Mulligan LM. *Nat Rev Cancer*. 2014;14(3):173-186. 2. Pützer BM et al. In: Diamanti-Kandarakis E, ed. *Contemporary Aspects of Endocrinology*. IntechOpen; 2011. https://www.intechopen.com/books/contemporary-aspects-of-endocrinology/molecular-diagnostics-in-treatment-of-medullary-thyroid-carcinoma. Accessed August 23, 2018. 3. Pratilas CA et al. *Proc Natl Acad Sci U S A*. 2009;106(11):4519-4524. 4. Drilon A et al. *Nat Rev Clin Oncol*. 2018;15(3):151-167.

Alterations in RET structure and function can lead to tumorigenesis¹

1. Mulligan LM. *Nat Rev Cancer*. 2014;14(3):173-186. 2. Pützer BM et al. In: Diamanti-Kandarakis E, ed. *Contemporary Aspects of Endocrinology*. IntechOpen; 2011. https://www.intechopen.com/books/contemporary-aspects-of-endocrinology/molecular-diagnostics-in-treatment-of-medullary-thyroid-carcinoma. Accessed August 23, 2018. 3. Pratilas CA et al. *Proc Natl Acad Sci U S A*. 2009;106(11):4519-4524. 4. Drilon A et al. *Nat Rev Clin Oncol*. 2018;15(3):151-167.

RET alteration occurs in a wide range of tumor type^{1,2}

3. Prescott JD et al. *Cancer.* 2015; 121(13):2137-2146. 4. Ballerini P et al. *Leukemia.* 2012;26(11):2384-2389.

Patients with *RET*-altered cancers have not yet achieved the promise of precision therapy

Ideal RET inhibitor profile:

- 1. Potently inhibit RET wild-type fusions (NSCLC & other cancers)
- 2. Potently inhibit oncogenic RET mutants (thyroid cancer)
- 3. Spare VEGFR2 in a kinome-selective manner
- 4. Prevent on-target resistance mutations

In vitro resistance screens have confirmed that multi-kinase inhibitors are vulnerable to RET mutations at V804(M/L/E) or Y806(H/C/N)

Activity-based clustering to identify hits from Blueprint library

Blueprint library delivers multiple gatekeeper-agnostic RET inhibitor scaffolds

	Scaffold 1	Scaffold 2	Scaffold 3	Scaffold 4	Scaffold 5
RET WT IC ₅₀ (nM)	56	13	9	7	85
RET V804L IC ₅₀ (nM)	30	17	12	5	52
pRET Cell IC ₅₀ (nM)	3300	765	1500	1725	
KDR/RET	26x	10x	56x	28x	9x
S(10) @ 3 μM*	0.089	0.071	0.041	0.046	0.054
Papp / efflux	16 / 3	7.5 / 6			<i>22 /</i> 1
HLM / RLM ER**	0.39 / 0.53	0.51 / 0.19	0.60 / 0.53	0.83 / 0.87	0.55 / 0.53
Solubility (µM)	13	96	1	5	6

*number of kinases inhibited at <10 POC divided by total number of human wt kinases **human / rat liver microsome in vitro extraction ratio

Q,

Progression of benzyl amide SAR leads to initial potency breakthrough

GK = Gatekeeper

X-Ray crystal structure of Compound 4 (B-ring pyridine analog)

Key features of scaffold

- Methylaminopyrazole hinge binder avoids gatekeeper pocket
- Aminopyrazole makes triplet H-bond interaction with kinase hinge
- Arylamide linker provides scaffolding to access pocket beyond catalytic Lys (K758); no specific protein interactions
- Terminal pyrazole accesses post-Lys pocket

Compound	4
RET WT IC ₅₀ (nM)	1.8

Further SAR development leads to advanced compound

Compound	3	5	
RET WT IC ₅₀ (nM)	2.1	1.6	
pRET Cell IC ₅₀ (nM)	29	58	
KDR/RET	48x	49x	
Papp / efflux	3.0 / 17.4	11 / 1.3	
HLM / RLM ER	0.00 / 0.28	0.35 / 0.27	
Solubility (µM)	9	16	
Mouse t _{1/2} @ 15 mg/kg PO (h)	2	7	

BID = twice daily dosing

fu = free fraction

Compound 5:

- First project compound to show full tumor growth inhibition in mouse RET tumor model
- Confirmed IC₉₀ required for tumor regression
- Advanced to human dose projection 6 g BID

To lower dose projection, need to improve:

- Potency
- Higher species pharmacokinetics
- Intrinsic clearance (issue masked by high HLM binding)

Compound	5	
HLM fu	0.09	
cLogD	3.5	
measured LogD	5.0	

Replacement of the aryl linker leads to potent alternate series

- Aryl linker replaced with saturated linker to improve physical properties
- Increased 3-dimensionality in linker leads to dramatic improvement in potency and solubility

Compound	5	6	7	8	9
RET WT IC ₅₀ (nM)	1.6	402	4.9	4.0	0.5
pRET Cell IC ₅₀ (nM)	58		1660	58	3.0
KDR/RET	49x		29x	34x	67x
Papp / efflux	11 / 1 .3		0.4 / 56	6 / 9	8/5
HLM / RLM ER	0.35 / 0.27		0.34 / 0.27	0.53 / 0.69	0.65 / 0.46
Solubility (µM)	16		88	>100	62

Advanced N-Linked compounds plagued by high unbound clearance and short half-life

Compound	9	10	11
RET WT IC ₅₀ (nM)	0.5	0.6	0.9
pRET Cell IC ₅₀ (nM)	3.0	2.4	10
KDR/RET	67x	176x	411x
HLM / RLM ER	0.65 / 0.46	0.24 / 0.26	0.46 / 0.28
Rat IV CI (mL/min/kg)	29	15	23
Rat IV Clu (mL/min/kg)	916	9109	2431
Rat t _{1/2} (h)	1.2	1.2	0.9

 N-linked series addressed only the potency aspect of an improved dose projection

• Still need to improve pharmacokinetic profile

CI = Clearance

Clu = Unbound clearance

No IVIVC or effect of ABT pretreatment on PK of N-linked series

No in vitro – in vivo correlation (IVIVC):

- Oxidative metabolism not a driver of clearance
- Needed alternative hypothesis to improve CI / dose projection

Trend observed in ring electronics and unbound clearance leads to C-linked designs

Hypothesis: Decreasing pKa of B ring leads to dramatic improvements in Clu

Design: sp³ carbon linked analogs will decrease electron density of B ring and improve Clu

Broad exploration of carbon linkers shows improved unbound clearance and half-lives

NH

• Synthesized and profiled a wide array of C-linked compounds to pick best linkers for further development

Compound	15	16	17	18	19	20	21
RET WT IC ₅₀ (nM)	1.7	0.8	5.5	2.0	1.0	0.3	0.4
pRET Cell IC ₅₀ (nM)	90	35	232	319	15	14	8.9
Rat IV CI (mL/min/kg)	11	17	3.4	24	2.7	26	14
Rat IV Clu (mL/min/kg)	8461	420	1848	383	1353	515	465
Rat t _{1/2} (h)	1.1	3.8	3.9	3.1	4.4	1.2	1.8

• Trans cyclohexyl linker gives excellent balance of potency, unbound clearance, and half-life

Advancement of trans cyclohexyl series leads to discovery of BLU-667

A THE REAL

Physicochemical Properties				
MW	533			
LogD (pH 7.4)	3.0			
TPSA	127			
FaSSIF (µM)	48			
Caco-2 (efflux ratio)	21 (1.0)			

Enzymatic IC ₅₀ (nM)					
RET WT	0.4				
RET CCD6	0.4				
RET M918T	0.4				
RET V804L	0.3				
RET V804M	0.4				
RET V804E	0.7				
RET Y806H	1.0				
KDR/RET	80x				
Cellular IC ₅₀ (Cellular IC ₅₀ (nM)				
RET WT IC ₅₀ (nM)	4.0				

In vivo potency (nM)				
RET IC ₅₀ , u	1.1			
RET IC ₉₀ , u	6.9			
In vitro Stability				
HLM ER	0.14			

RLM ER

DLM ER

MkLM ER

Pharmacokinetic Profile (IV Dosing)

	Cl (mL/min/kg)	Clu (mL/min/kg)	Vdss (L/kg)	t _{1/2} (h)	%F
Rat	14	710	3.3	3.8	>100
Dog	2.0	235	0.49	3.5	>100
Monkey	6.5	131	1.7	3.7	100

0.10

0.21

0.48

Targeted RET inhibition induces regression in RET-altered in vivo tumor models

1. Subbiah V et al. Cancer Discovery 2018.

Active doses of BLU-667 do not functionally impact VEGFR-2 in PDX models

BLU-667 prevents RET resistance mutants

Conclusions

- Blueprint Medicines Library provided multiple starting scaffolds with activity against RET wt and predicted resistance mutations
- Cell potency was improved ~1000x while retaining broad activity against resistance mutants and KDR sparing profile
- DMPK optimization faced with poor IVIVC was overcome by identifying a trend in electronic properties and unbound clearance
- BLU-667 is active in WT, gatekeeper mutant, and intracranial preclinical tumor models at doses that spare in vivo KDR activity
- Potently inhibits RET wild-type fusions (NSCLC & other cancers) and oncogenic mutations (MTC)
 - High preliminary response rates and durable activity in phase 1 dose escalation
 - BLU-667 has been generally well tolerated with most AEs being Grade 1/2

Program outlook and anticipated milestones

- BLU-667 phase 1 dose expansion is open and enrolling globally
- Plan to initiate a Phase 3 trial in first-line RET-fusion NSCLC in the second half of 2019
- Plan to initiate a Phase 2 combination trial of BLU-667 and osimertinib in treatment-resistant, EGFRmutant NSCLC harboring an acquired RET alteration in the second half of 2019
- Plan to submit an NDA to the FDA for second-line RET-fusion NSCLC and second-line RET-mutant MTC in the first half of 2020

Acknowledgements

- Participating patients and families
- Investigators, and research coordinators
 - Vivek Subbiah, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, United States
 - Matthew Taylor, The Knight Cancer Institute Oregon Health & Science University Portland, United States
 - Justin Gainor, Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, United States
 - Ignatius Ou, Chao Family Comprehensive Cancer Center University of California Irvine Medical Center, United States
 - Marcia Brose, Abramson Cancer Center, University Of Pennsylvania, United States
 - Elena Garralda, Vall d'Hebron Institute of Oncology Vall d'Hebron University Hospital, Barcelona, Spain
- Collaborators at MGH
 - Zofia Piotrowska, Aaron Hata, Lecia Sequist
- Colleagues at Blueprint Medicines