Clinical efficacy of avapritinib in gastrointestinal stromal tumors (GISTs) with different *KIT* genotypes: post hoc analysis of the phase 1 NAVIGATOR and phase 1/2 CS3007-101 trials

Michael C. Heinrich¹, Jian Li², Xinhua Zhang³, Robin L Jones⁴, Suzanne George⁵, Jonathan Trent⁶, César Serrano⁷, Yanhong Deng⁸, Sebastian Bauer⁹, Shirong Cai¹⁰, Xin Wu¹¹, Yongjian Zhou¹², Kaixiong Tao¹³, Zhichao Zheng¹⁴, Jun Zhang¹⁵, Yuehong Cui¹⁶, Hui Cao¹⁷, Meining Wang¹⁸, Jin Hu¹⁹, Lin Shen²

¹Portland VA Health Care System and OHSU Knight Cancer Institute, Portland, OR. ²Department of Gastrointestinal Oncology, Laboratory of Carcinogenesis and Translational Research of the Ministry of Education, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing, China. ⁴Royal Marsden Hospital and Institute of Cancer Research, Chelsea, London, UK. ⁵Sarcoma Center, Dana Farber Cancer Institute, Boston, MA. ⁶University of Miami-Sylvester Comprehensive Cancer Center, Miami FL. ⁷Department of Medical Oncology, Vall d'Hebron University, Guangzhou, China. ⁹Department of Medical Oncology, Vall d'Hebron University, Guangzhou, China. ⁹Department of Medical Oncology, Vall d'Hebron University, Guangzhou, China. ⁹Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. ¹⁰Department of Gastroenterology, Wuhan Union Hospital, Beijing, China. ¹²Department of Gastroenterology, Fujan Medical University, Guangzhou, China. ¹³Department of Gastroenterology, Fujan, China. ¹³Department of Gastroenterology, Wuhan Union Hospital, Beijing, China. ¹³Department of Gastroenterology, Wuhan, China. ¹³Department of Gastroenterology, Fujan, China. ¹³Department of Gastroenterology, Fujan, China. ¹³Department of Gastroenterology, Fujan, China. ¹³Department of Gastroenterology, Renji Hospital, Beijing, China. ¹⁴Department of Gastroenterology, Renji Hospital & Institute, Stone (Suzhou, Fujan, China. ¹⁴Department of Gastroenterology, Renji Hospital & Institute, Portland, China. ¹⁴Department of Gastroenterology, Renji Hospital & Institute, Portland, China. ¹⁴Department of Gastroenterology, Renji Hospital & Institute, Portland, China. ¹⁴Department of Gastroenterology, Renji Hospital, Sunga, China. ¹⁶Department of Gastroenterology, Renji Hospital & Institute, Portland, China. ¹⁶Department of Gastroenterology, Renji Hospital & Institute, Portland, China. ¹⁶Department of Gastroenterology, Renji Hospital & Institute, Po

BACKGROUND

- Tyrosine kinase inhibitors targeting KIT/PDGFRA are the standard of care for patients with unresectable/metastatic GISTs.
 However, the efficacy of approved tyrosine kinase inhibitors (TKIs) for GISTs is modest and varies according to genotypes in the second- and later-line settings.^{1,2} A tumor-genotype-based treatment paradigm is needed.
- Avapritinib (AVA) is a highly selective KIT/PDGFRA inhibitor approved to treat patients (pts) with PDGFRA18-mutant GISTs that
 has also demonstrated preclinical activity against KIT activation loop (AL) and KIT exon 9 (KIT 9) mutations.^{1,3}
- A post hoc efficacy analysis of AVA in pts with non-PDGFRA-mutant GISTs enrolled in the phase 1 NAVIGATOR (NCT02508532) and phase 1/2 China bridging (NCT04254939; CS3007-101) trials^{4,5} was conducted.

METHODS

Study design and patients

- Pts with *KIT* mutations treated with 300 mg QD AVA from either trial were included in the analysis. Tumor tissue and/or plasma (circulating tumor DNA) were analyzed at baseline to identify tumor *KIT* mutations.
- Pts were divided into two groups: those with *KIT* AL (exon 17 or 18) mutations without *KIT* ATP binding pocket (ABP; exon 13 or 14) mutations (*KIT* AL^{pos}ABP^{neg}) versus all other *KIT* mutations (*KIT* OTHERS) (Figure 1).
- Progression-free survival (PFS) and objective response rate (ORR) were compared using Cox and logistic regression, respectively; adjustment by inverse probability weighting of baseline characteristics (IPW_{BL}) was conducted.

Figure 1. Pt population for the post-hoc analysis of AVA in KIT-mutant GIST

RESULTS

Patient population

- The pts were predominantly male (63.8%) and White (56.9%) with heavily treated (61.3% with ≥3 prior TKIs) metastatic disease (96.9%) (**Table 1**).
- *KIT*-AL mutations occurred more frequently than *KIT*-ABP mutations (**Table 1**, **Figure 2**).
- Median follow-up duration was 22.0 months (range, 0.5–39.0 months).

n (%) unless stated otherwise	All patients (<i>N</i> =160)
Age (years), median (range)	58 (33–80)
Sex, male	102 (63.8%)
Ethnicity	
White	91 (56.9)
Asian	45 (28.1)
Other	24 (15.0)
Tumor size (longest diameter), cm	
≤5	59 (36.9)
>5 to 10	71 (44.4)
>10	26 (16.3)
Missing	4 (2.5)
Metastatic disease, yes	155 (96.9)
Location of KIT mutation	
ECD exon 9	43 (26.9)
JMD exon 11	111 (69.4)
AL exon 17/18	74 (46.3)
ABP exon 13/14	34 (21.3)
ALposABPneg	60 (37.5)
≥3 prior TKIs	98 (61.3)

AL, activation loop; AL^{pos}ABP^{neg}, activation-loop positive, ATP binding pocket negative; ABP, ATP binding pocket; ECD, extracellular domain; JMD, juxtamembrane domain.

Label number outside the sector diagram represents the affected codon in KIT; Label number in the sector represents the number of patients with corresponding mutations detected. ABP, ATP binding pocket; AL, activation loop; TISSUE, tumor tissue

Antitumor response

- The unadjusted ORR was significantly higher in the *KIT* AL^{pos}ABP^{neg} group than in the *KIT* OTHERS group (26.7% [16/60] vs 12.0% [12/100]; P=0.0185); the disease control rate was also higher (**Table 2. Figure 3**); findings were consistent following IPW_{BL} adjustment (ORR, 31.4% vs 12.1%; P=0.0047).
- Pts receiving AVA in the 2L setting (38.5%) achieved numerically higher ORRs compared with those receiving other lines (Table 2).
- ORRs were numerically higher for Chinese pts (36.4%) than for non-Chinese pts (24.5%) in the ≥2L setting (P=0.4244) (Table 2).
- Meaningful antitumor activity was seen in pts with KIT-9-mutant GIST in the fourth- and later-line (\geq 4L) settings (**Table 2**).

Table 2. Tumor response data

Data are n (%) unless stated otherwise	<i>KIT</i> groups: unadjusted		<i>KIT</i> groups IPW _{вL} -adjusted		Efficacy in <i>KIT</i> AL ^{pos} ABP ^{neg} by therapy line				<i>KIT</i> AL ^{pos} ABP ^{neg} (≥2L)		<i>KIT</i> 9	
	AL ^{pos} ABP ^{neg}	OTHERS	AL ^{pos} ABP ^{neg}	OTHERS	2L	3L	4L	>4L	Chinese	Non- Chinese	4L	>4L
	<i>N</i> =60	<i>N</i> =100	<i>N</i> =58	<i>N</i> =95	<i>n</i> =13	<i>n</i> =9	<i>n</i> =15	<i>n</i> =23	<i>п</i> =11 ^ь	<i>n</i> =49°	<i>n</i> =14	<i>n</i> =19
ORR (%)	26.7	12.0	31.4	12.1	38.5	22.2	20.0	26.1	36.4	24.5	14.3	15.8
Partial response	16 (26.7)	12 (12.0)	31.4	12.1	5 (38.5)	2 (22.2)	3 (20.0)	6 (26.1)	4 (36.4)	12 (24.5)	2 (14.3)	3 (15.8)
Stable disease	30 (50.0)	43 (43.0)	47.2	43.6	6 (46.2)	6 (66.7)	9 (60.0)	9 (39.1)	6 (54.5)	24 (49.0)	9 (64.3)	10 (52.6)
Progressive disease	10 (16.7)	40 (40.0)	15.8	40.5	2 (15.4)	1 (11.1)	3 (20.0)	4 (17.4)	0	10 (20.4)	3 (21.4)	6 (31.6)
Not available/unknown	4 (6.7)	5 (5.0)	5.7	3.8	0	0	0	4 (17.4)	1 (9.1)	3 (6.1)	0	0
Odds ratio (95%CI), %	2.67 (1.16–6.12)		3.31 (1.44–7.58)		-	—	-	-	1.76 (0.44–7.08)		_	
<i>P</i> value	0.0185		0.0047		-	-	-	-	0.4244		-	-
Disease control rate, n (%)	79.7	55.0	78.6	55.7	84.6	88.9	80.0	65.2	90.9	73.5	78.6	68.4

≥2L, second line and beyond; 2L, second line; 3L, third line; 4L, fourth line; >4L, beyond fourth line; AL^{pos}ABP^{neg}, activation-loop positive, ATP binding pocket negative; IPW_{BL}, inverse probability weighting of baseline characteristics; ORR, objective response rate.

CONCLUSIONS

- AVA demonstrated greater antitumor activity in pts with GIST harboring KIT AL^{pos}ABP^{neg} mutations than in pts with other KIT mutations.
- AVA is a promising 2L treatment option for pts with KIT AL^{pos}ABP^{neg}-mutant GISTs and has potential as a laterline therapy (≥ 4L) for pts with KIT 9 mutations.
- AVA may confer meaningful clinical benefit in pts with GIST and specific types of *KIT* mutation, especially *KIT*-AL or *KIT* 9 mutations.

Progression-free survival

- Both unadjusted and IPW_{BL}-adjusted median PFS were significantly higher in the *KIT* AL^{pos}ABP^{neg} group versus *KIT* OTHERS (Figure 4A,B).
- A PFS benefit with AVA was observed in *KIT* AL^{pos}ABP^{neg} pts in the second-line setting over later lines (Figure 4C).
- There was also clinically meaningful PFS benefit with AVA in pts with a *KIT* 9 mutation in both the fourth-line (4L) and ≥4L settings (Figure 4D); median PFS was 7.2 months in *KIT* AL^{pos}ABP^{neg} pts harboring a *KIT* 9 mutation (*n*=8) in the 4L and ≥4L settings.

Figure 4. Kaplan–Meier estimates of PFS assessed by IRR per mRECIST (A) unadjusted and (B) after IPW_{BL} adjustment, and by line of therapy (C) and in 4L and \geq 4L pts with *KIT*-9-mutant disease (D)

References:

- 1. National Comprehensive Cancer Network Guidelines: Gastrointestinal Stromal Tumors
- v2.2022.
- 2. Evans EK et al. *Sci Transl Med* 2017;9(414):eaao1690.
- 3. Gebreyohannes YK et al. *Clin Cancer Res* 2018;25(2):609-18.
- 4. Li J et al. Oncologist 2022; 28(2):187-e114.
- 5. Jones RL et al. Eur J Cancer 2021;145:132-42.

Acknowledgements:

This study was funded by (Suzhou) CStone Pharmaceuticals. We thank all study participants and their families, and the investigators and study teams at each study site. We also thank Jacqueline Kolston PhD (Parexel Int) provided medical writing support under the direction of the authors, which was funded by Cstone.