

Frequency of Oncogenic RET Alterations in Solid Tumors

Indication	RET Alteration	Frequency	
NSCLC ^{2,3}	Fusions	~1–2%	
Advanced MTC ⁶	Activating mutations	~90%	
PTC ⁷	Fusions	~20%	
Colon, breast, other tumor types ^{8,9}	Fusions	<1%	

Pralsetinib selectively inhibits oncogenic RET fusions and gatekeeper mutants

Variant	Biochemical IC ₅₀ (nM)		
RET wild-type	0.4		
RET V804L	0.3		
RET V804M	0.4		
RET M918T	0.4		
CCDC6-RET	0.4		

RET Cell Lines	Cellular IC ₅₀ (nM)	
Ba/F3-KIF5b-RET	10.1	
Ba/F3-KIF5b-RET V804L	8.1	
Ba/F3-KIF5b-RET V804M	14.1	
Ba/F3-KIF5b-RET V804E	8.1	
LC2/ad (CCDC6-RET)	3.7	
TPC-1 (CCDC6-RET)	10.9	
MZ-CRC (RET M918T)	4.2	
TT (RET C634W)	15.4	

Kinome Selectivity for RET

^aThe foregoing website is maintained by Cell Signaling Technology Inc., and Blueprint Medicines is not responsible for its content.

Pralsetinib was crafted to selectively target oncogenic *RET* fusions and activating mutations. Pralsetinib displays subnanomolar biochemical inhibitory activity across activated RET kinase fusions and mutations and low nanomolar anti-proliferative activity against RET-fusion or mutant-driven cell lines. When screened against a panel of human kinases, pralsetinib inhibited RET (large dot) most potently. Those kinases inhibited by pralsetinib within 50x RET IC₅₀ are shown with medium dot and within 100X RET IC₅₀ shown with small dot.

Pralsetinib (BLU-667) demonstrates robust activity in **RET-fusion-driven intracranial tumor models**

Erica K. Evans, Wei Hu, Fong Cao, Klaus Hoeflich, and Marion Dorsch Blueprint Medicines, Cambridge, MA, USA

Pralsetinib was active against intracranial metastases in the clinical setting¹⁰

- 52-vear-old woman. RET-fusion-positive NSCLC, prior platinum
- Near-complete resolution of previously untreated target brain
- metastasis after 2 months of pralsetinib 400 mg QD • Continues to receive treatment with ongoing confirmed PR
- (70% shrinkage) at 10+ months (data cut-off 16 Aug 19)
- Images courtesy of Dr. Stephen Liu, Georgetown University, Washington, DC

- Complete resolution of previously untreated nontarget brain metastasis after 2 months of pralsetinib 400 mg QD
- Continues to receive treatment with ongoing confirmed
- CR at 10+ months (data cut-off 16 Aug 19) Images courtesy of Dr. P Cassier Centre, Leon Berard, Lyon, France

Pralsetinib demonstrated anti-tumor activity in patients with CNS involvement¹⁰

et	40 -	Pralsetinib Starting Dose 400 mg QD ^a				
Change From Baseli of Diameters of Targe Lesions, %	20 - 0 - -20 - -40 -					
in Sum	-80 - -80 -	 58% ORR (confirmed responses) in <i>RET</i>-fusion-positive NSCLC patients, 60% ORR (confirmed responses) in patients previously treated with platinum chemotherapy 71% (5/7) treatment-naïve patients had confirmed PR No CNS involvement CNS involvement 				
		^a Patients enrolled by 14 Nov 18, with a data cut-off of 28 Apr 19. The response-evaluable population included patients with measurable disease at baseline and ≥1 evaluable post-treatment disease assessment and excluded four patients who previously received >1 cycle of a selective RET inhibitor. All responses are confirmed on 2 consecutive assessments as per RECIST 1.1.				

Adverse Events	Treatment-Emergent AE		Treatment-Related AE	
(Pralsetinib starting dose 400 mg)	All (≥15% overall)	Grade ≥3	All	Grade ≥3
Constipation	30%	2%	17%	2%
Neutropeniaª	26%	13%	26%	13%
AST increased	24%	5%	20%	2%
Fatigue	21%	3%	13%	3%
Hypertension	20%	13%	13%	10%
Anemia	18%	7%	11%	4%
Diarrhea	18%	2%	9%	-
Pyrexia	18%	-	2%	-
ALT increased	17%	3%	13%	2%
Cough	17%	-	3%	-
Dry mouth	17%	-	12%	-
Additional avada > 2 traatmaat valatad	AFe (> 00/); increased CDK (20/	$\left -\frac{1}{2} \right $		

dditional grade ≥3 treatment-related AEs (≥2%): increased CPK (3%), leukopenia^b (3%). Across the entire study (n=276), the rate of discontinuation due to treatment-related toxicity was 4%. ^aCombined term including decreased neutrophils and neutropenia. ^bCombined term including leukopenia and white blood cell count decreased.

CONCLUSIONS

- Pralsetinib has broad anti-tumor activity in intracranial tumor models regardless of *RET*-fusion partner
- Pralsetinib showed broad, durable anti-tumor activity in patients with *RET*-fusion NSCLC, both systemically and in the brain
- ARROW clinical trial enrollment continues in treatment naïve *RET*-fusion-positive NSCLC (NCT03037385)

Acknowledgments

Third-party editorial assistance was provided by Meredith Kalish, PhD, of Ashfield Healthcare Communications and was funded by Blueprint Medicines[™]

Abbreviations

AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase, BID, twice daily; CI, confidence interval; CPK, creatine phosphokinase; CR, complete response CRC, colorectal cancer; DCR, disease control rate (best response of SD or better); h, hour; IC_{so}, half maximal inhibitory concentration; MTC, medullary thyroid cancer; MTD, maximum tolerated dose; NSCLC, non-small cell lung cancer; ORR, overall response rate; PD, progressive disease; PDX, patient-derived xenograft; PO, orally; PR, partial response; 9. Ballerini P, et al. Leukemia. 2012;26(11):2384-2389.

C, papillary thyroid cancer; QD, once daily; RP2D, recommended phase 2 dose; SD, stable disease; TKI, tyrosine kinase inhibitor; WT, wild-type.

References

- 1. Subbiah V, et al. Cancer Discov. 2018;8(7):836-849 2. Lipson D, et al. Nat Med. 2012;18(3):382-384.
- 3. Takeuchi K, et al. Nat Med. 2012;18(3):378-381 4. Reck M, et al. N Engl J Med. 2017;377(9):849-86
- 5. Yawn BP, et al. Minn Med. 2003;86(12):32-37.
- 6. Romei C, et al. Oncotarget. 2018;9(11):9875-9884 Santoro M, et al. J Clin Invest. 1992;89(5):1517-152
- 3. Kato S, et al. Clin Cancer Res. 2017;23(8):1988-1997
- 10. Gainor JF, et al. J Clin Oncol. 2019;37(suppl; abstr 9008)