#### Abstract 6080 / Poster 72

# **Pralsetinib in patients** with advanced or metastatic RET-altered thyroid cancer: updated data from the **ARROW** trial

Aaron S. Mansfield,1 Vivek Subbiah,2 Martin Schuler,3 Viola W. Zhu,4 Julien Hadoux.<sup>5</sup> Marcia S. Brose.<sup>6\*</sup> Giuseppe Curigliano.<sup>7</sup> Lori Wirth.<sup>8</sup> Elena Garralda,9 Douglas Adkins,10 Yann Godbert,11 Myung-Ju Ahn,12 Philippe Cassier,<sup>13</sup> Byoung Chul Cho,<sup>14</sup> Chia-Chi Lin,<sup>15</sup> Hui Zhang,<sup>16</sup> Alena Zalutskava.<sup>16</sup> Teresa Barata.<sup>17</sup> Astrid Scalori.<sup>18</sup> Matthew Taylor<sup>19</sup>

### BACKGROUND

- Oncogenic RET alterations are common in thyroid cancers and are therapeutically targetable.1
- Current treatment options for patients with advanced thyroid cancer include the multikinase inhibitors cabozantinib and vandetanib for medullary thyroid cancer (MTC), and cabozantinib, lenvatinib and sorafenib for differentiated thyroid cancer: these are often associated with dose reduction or discontinuation of treatment due to adverse events.2-4
- Pralsetinib is a highly potent, selective RET inhibitor.
- · Pralsetinib at 400 mg once-daily (QD) has demonstrated clinical activity in patients with RET-altered thyroid cancer and measurable disease at baseline in the phase I/II ARROW trial (NCT03037385; data cut-off: 22 May 2020)5
- Overall response rates (ORR) by blinded independent central review (BICR): 60% (n=33/55) in patients with RET-mutant MTC previously treated with cabozantinib and/or vandetanib (C/V), 71% (n=15/21) in patients with treatment-naïve RET-mutant MTC, and 89% (n=8/9) in patients with previously treated RET fusion-positive thyroid cancer (RET-fp TC).
- We present updated data of these cohorts in the intention-to-treat (ITT) population (data cut-off: 12 April 2021).

## 

- Adult patients with RET-altered locally advanced/metastatic thyroid cancer, who had enrolled in ARROW and initiated oral pralsetinib at 400 mg QD. were included (enrollment cut-off: 23 August 2020).
- Phase II primary endpoints: ORR by BICR per RECIST v1.1, and safety; key secondary endpoints include: duration of response (DoR), progression-free survival (PFS), and overall survival (OS)
- ORR and DoR: evaluated in both the measurable disease and the ITT populations; PFS and OS: assessed only in the ITT population
- Safety was evaluated in all patients with RET-altered thyroid cancer who initiated pralsetinib at 400 mg QD prior to the data cut-off.

#### Affiliations

ntimayo edu): <sup>2</sup>University of Texas MD Ande n Cancer Center at the University of Pennov titute of Oncology, Barcelona, <sup>13</sup>Centre Léon Bérard, Lyon,

# **RESULTS**

#### Patient characteristics

- · At data cut-off (12 April 2021), the ITT population comprised 145 patients with RET-mutant MTC (with/without prior systemic therapy, including C/V), and 22 patients with RET-fp TC, of which 21 had received prior systemic therapy, including radioactive iodine (Table 1)
- Treatment-naïve patients had received no prior systemic therapy.

#### Table 1. Patient demographics and baseline characteristics (ITT population)

|                                                                                                                  | RET-mutant MTC:<br>prior C/V<br>(n=67)              | RET-mutant MTC:<br>treatment naïve<br>(n=67) | <i>RET-</i> fp TC:<br>prior systemic<br>treatment (n=21) |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------------------|
| Median age, years (range)                                                                                        | 59 (25-83)                                          | 55 (18–81)                                   | 61 (23–74)                                               |
| Male, n (%)                                                                                                      | 44 (65.7)                                           | 43 (64.2)                                    | 9 (42.9)                                                 |
| Race group, n (%)<br>White / Asian<br>Other                                                                      | 55 (82.1) / 3 (4.5)<br>9 (13.4)                     | 27 (40.3) / 37 (55.2)<br>3 (4.5)             | 15 (71.4) / 6 (28.6)<br>0                                |
| ECOG performance status, n (%)<br>0<br>1<br>2*                                                                   | 18 (26.9)<br>46 (68.7)<br>3 (4.5)                   | 38 (56.7)<br>29 (43.3)<br>0                  | 9 (42.9)<br>12 (57.1)<br>0                               |
| Prior systemic therapy in any<br>setting, n (%)<br>Chemotherapy / immunotherapy<br>C// L/S<br>Radioactive iodine | 7 (10.4) / 3 (4.5)<br>67 (100) / 5 (7.5)<br>4 (6.0) | No prior<br>antineoplastic<br>treatment      | 1 (4.8) / 0<br>3 (14.3) / 11 (52.4)<br>20 (95.2)         |
| Number of prior lines of therapy,<br>n (%)<br>1 / 2<br>≥3                                                        | 31 (46.3) / 24 (35.8)<br>12 (17.9)                  | No prior<br>antineoplastic<br>treatment      | 8 (38.1) / 4 (19.0)<br>9 (42.9)                          |
| CNS/brain metastases                                                                                             | 7 (10.4)                                            | 6 (9.0)                                      | 9 (42.9)                                                 |

ECOS performance status of z was permitted before a protocol amendment. CrV, caloczanino and/or variatelianio; CNS, central nervous system; ECOG, Eastern Cooperative Oncology Group; ITT, intention-to-treat; L/S, lenvatinib and/or sorafenib; MTC, medulary; thyroid cancer: RF1610; RF1610; nonsitive thyroid cancer.

#### Table 2. Overall efficacy

|                                                                                                                 | Measurable disease population                                                                |                                                                                              |                                                                                  | Intention-to-treat population                                                       |                                                                                              |                                                                                  |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                                                                                                 | RET-<br>mutant<br>MTC:<br>prior C/V<br>(n=61)                                                | RET-<br>mutant<br>MTC:<br>treatment<br>naïve<br>(n=62)                                       | RET-fp TC:<br>prior<br>systemic<br>treatment<br>(n=19)                           | RET-<br>mutant<br>MTC:<br>prior C/V<br>(n=67)                                       | RET-<br>mutant<br>MTC:<br>treatment<br>naïve<br>(n=67)                                       | RET-fp TC:<br>prior<br>systemic<br>treatment<br>(n=21)                           |
| RR*, n (%)<br>55% CI]<br>CR<br>PR<br>SD<br>PD<br>Not evaluable                                                  | 33 ( <b>54.1</b> )<br>[40.8–66.9]<br>1 (1.6)<br>32 (52.5)<br>24 (39.3)<br>2 (3.3)<br>2 (3.3) | 48 ( <b>77.4</b> )<br>[65.0–87.1]<br>4 (6.5)<br>44 (71.0)<br>11 (17.7)<br>2 (3.2)<br>1 (1.6) | 17 ( <b>89.5</b> )<br>[66.9–98.7)<br>2 (10.5)<br>15 (78.9)<br>2 (10.5)<br>0<br>0 | 34 (50.7)<br>[38.2-63.2]<br>2 (3.0)<br>32 (47.8)<br>28 (41.8)<br>2 (3.0)<br>3 (4.5) | 48 ( <b>71.6</b> )<br>[59.3–82.0]<br>4 (6.0)<br>44 (65.7)<br>13 (19.4)<br>2 (3.0)<br>4 (6.0) | 18 ( <b>85.7</b> )<br>[63.7–97.0]<br>3 (14.3)<br>15 (71.4)<br>3 (14.3)<br>0<br>0 |
| ledian DoR*t,<br>105,<br>15% CI]<br>10. of events,<br>(%)<br>2-mo rate, %<br>15% CI]<br>8-mo rate, %<br>15% CI] | 21.7<br>[18.0-NE]<br>16 (48.5)<br>84.3<br>[71.6-96.9]<br>67.2<br>[50.4-84.0]                 | NR<br>[NE-NE]<br>6 (12.5)<br>88.2<br>[77.0-99.3]<br>74.0<br>[53.5-94.6]                      | 17.5<br>[11.2-NE]<br>6 (35.3)<br>71.3<br>[46.9-95.7]<br>42.8<br>[8.9-76.7]       | 25.8<br>[18.0-NE]<br>16 (47.1)<br>84.7<br>[72.4-97.1]<br>68.2<br>[51.9-84.6]        | NR<br>[NE-NE]<br>6 (12.5)<br>88.2<br>[77.0-99.3]<br>74.0<br>[53.5-94.6]                      | 17.5<br>[16.0-NE]<br>6 (33.3)<br>73.3<br>[50.4-96.2]<br>48.9<br>[17.3-80.4]      |

\*Jacassed by central raindoxy network RCECT Y1.1 Toolt analysis includes galanta with contrast CR/RP DoR results PE BMA consequent rails. CV: Asakset in bendty marketines. C. acknowlednes includ. CR: complete seguences DoR, duration of response. EMA, European Medicines Agency: motily, IMTC, medialary thyroid cancer, NR, not estimaliset, NR, not reached. CMR: overall response railer, RP, partial response. PD, Argorgensie disease;

RET-fp TC. RET fusion-positive thyroid cancer: SD, stable dis

#### Disclosures

A.S.M. report

%)

estimprovement 1 baseline in SLD (°

#### Efficacy: ORR

- · In the ITT population, the ORR was (Table 2):
- 51% in patients with RET-mutant MTC who had received prior C/V
- 72% in treatment-naïve patients with RET-mutant MTC
- 86% in patients with previously treated RET-fp TC.
- Similar results were observed in the measurable disease population (Table 2).
- Responses were observed regardless of the RET mutation genotype or RET fusion partner (Figure 1).

#### Efficacy: time-to-event endpoints

- · In the ITT population, median DoR was (Table 2):
- 25.8 months in patients with RET-mutant MTC who had received prior C/V - Not reached (NR) in treatment-naïve natients with RET-mutant MTC
- 17.5 months in patients with previously treated RET-fp TC.
- · DoR remains immature, with fewer than 50% of events having occurred by the data cut-off
- · Median PFS: 24.9 months (95% CI 19.7-31.2) in patients with RET-mutant MTC who had received prior C/V: NR (95% CI 27.5-not estimable [NF]) in treatment-naïve patients with RET-mutant MTC; 19.4 months (95% CI 13.0-NE) in patients with previously treated RET-fp TC (Figures 2 and 3).

· Median OS was NR for all three cohorts.

Figure 1. Best individual responses\* (ITT) in A) patients with RET-mutant MTC who had received prior C/V<sup>†</sup>; B) treatment-naïve patients with RET-mutant MTC; C) patients with previously treated *RET*-fp TC







Best confirmed overall response: CCDC6 NC0A4 Other

essment per RECIST v1.1. <sup>1</sup>Three patients in this cohort had both an M918T and a V804X mu n as M918T in the figure. C/V, cabozantinib and/or vandetanib; ITT, intention-to-treat; MTC, m ot MTC modullor. thurnid cancer; RET-fp TC, RET fus nid cancer: SLD, sum of longest dian

#### Figure 2. PFS in patients with RET-mutant MTC who had received prior C/V, or

tients with RET-mutant MTC







21 21 19 18 13 10 7 5 2 4 PES\_progression-free survival: RET-fp TC\_RET fusion-positive thyroid cancer

#### Safety

- · RET-altered thyroid cancer safety population: 172 patients treated at 400 mg QD The most frequent treatment-related adverse events (TRAEs) were
- increased aspartate aminotransferase (39%), anemia (35%), hypertension (33%) and decreased white blood cell count (30%)
- Serious TRAEs were reported in 16% of patients; the most frequent serious TRAE was pneumonitis (3%)
- 5% of patients discontinued pralsetinib due to a TRAE One patient died due to a TRAE (pneumocystis jirovecii pneumonia)
- following 44 days (<3 cycles) on pralsetinib.

#### 0 CONCLUSIONS

In this updated analysis including more patients, pralsetinib continues to show high efficacy and a manageable safety profile in patients with RET-altered thyroid cancer, regardless of mutation genotype or fusion partner.

### SUMMARY





s of this poster obtained through Quick Response (QR) Code in personal use only and may not be reproduced without usion from ASCO® or the author of this poster.

profile

Acceptable safety

Acknowledgements

- - References